English Polski
Akademia Morska w Szczecinie

DSpace Home

DSpace/Manakin Repository

Show simple item record

Author Pacana, Jacek
Affiliation Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics Department of Mechanical Engineering
E-mail pacanaj@prz.edu.pl
Author Homik, Wojciech
Affiliation Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics Department of Mechanical Engineering
E-mail whomik@prz.edu.pl
ISSN printed 1733-8670
URI https://repository.scientific-journals.eu/handle/123456789/2647
Abstract This study was designed to determine the vibroactivity parameters of a hermetic harmonic drive. A specially-prepared test bench was used to measure the normal velocity of vibrations and acoustic pressure generated by the unit. Piezoelectric sensors were applied to measure the characteristic values on the body of the prototype. In selected sections of drive, we determined the effective values of acceleration ae and frequency f. For the same points, the effective values of vibration velocity Vc were determined for the corresponding frequencies. The findings presented in this paper enable the assessment of a toothed gear in terms of the quality of its workmanship and wear-related deterioration, which are very important due to the characteristic work of this special drive
Pages 6
Publisher Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie
Keywords vibration measurement
Keywords vibroactivity
Keywords hermetic harmonic drive
Keywords fexspline
Keywords circular spline
Keywords wave generator
Title Vibroacoustic testing of prototype hermetic harmonic drive
  1. Bompos, N.A., Artemiadis, P.K., Oikonomopoulos, A.S. & Kyriakopoulos, K.J. (2007) Modeling, full identification and control of the mitsubishi PA-10 robot arm. International Conference on Advanced Intelligent Mechatronics 2007, Zurich, Switzerland, 4–7 September 2007. IEEE. DOI: 10.1109/AIM.2007.4412421.
  2. Cempel, C (1991) Vibroacoustic Condition Monitoring. New York, London: Ellis Horwood.
  3. Dudley, D.W. (1962) Harmonic Drive Arrangements. Gear Handbook. New York: McGraw-Hill Publishing Co.
  4. Folęga, P. (2010) Wpływ wybranych czynników konstrukcyjnych na wibroaktywność przekładni zębatych. Pomiary Automatyka Kontrola 56, 6, pp. 602–605.
  5. Folęga, P. (2015) Wspomagane komputerowo konstruowanie wybranych elementów przekładni zębatych. Gliwice: Wydawnictwo Politechniki Śląskiej.
  6. Gravagno, F., Mucino, V.H. & Pennestrì, E. (2016) Influence of wave generator profile on the pure kinematic error and centrodes of harmonic driver. Mechanism and Machine Theory 104, pp. 100–117.
  7. Jeon, H.S. & Oh, S.H. (1999) A study on stress and vibration analysis of a steel and hybrid flexspline for harmonic drive. Composite Structures 47, 1–4, pp. 827–833.
  8. Kalina, A., Mazurkow, A. & Warchoł, S. (2017) Przegląd rozwiązań konstrukcyjnych przekładni falowych. Przegląd Mechaniczny 2, pp. 45–48.
  9. Krishnan, S. & Voorhees, C. (2001) The use of harmonic drives on NASA’s Mars Exploration Rover. Harmonic Drive International Symposium, Nagano, Japan
  10. Lasocki, L. (1986) Przekładnie falowe. Przegląd Mechaniczny 11, pp. 5–9
  11. Li, S. (2016) Diaphragm stress analysis and fatigue strength evaluation of the flexspline, a very thin-walled spur gear used in the strain wave gearing. Mechanism and Machine Theory 104, pp. 1–16.
  12. Mijał, M. (1999) Synteza falowych przekładni zębatych. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej
  13. Ostapski, W. (2011) Przekładnie falowe. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  14. Pacana, J. & Budzik, G. (2004) Naprężenia w wieńcu zębatym koła podatnego falowej zębatej przekładni hermetycznej. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika 64, Rzeszów
  15. Pacana, J. & Markowska, O. (2016) The analysis of the kinematic accuracy of the actual harmonic drive on a test bench. Advances in Manufacturing Science and Technology 40, 1, pp. 47–54
  16. Pacana, J., Witkowski, W. & Mucha, J. (2017) FEM analysis of stress distribution in the hermetic harmonic drive flexspline. Strength of Materials 49, 3, pp. 388–398.
  17. PN-N-01358:1990. Vibration – Measuring methods and evaluation of vibration of machines. Polish version.
  18. PN-ISO 8579-2:1996. Acceptance code for gears – Part 2: Determination of mechanical vibrations of gear units during acceptance testing. Polish version.
  19. Ueura, K. & Slatter, R. (1999) Development of the harmonic drive gear for space applications. Space Mechanisms and Tribology, European Space Agency, ESA-SP 438, pp. 259–264.
  20. Wieczorek, A. (2008) Metody zmniejszania hałasu przekładni zębatych – zmiana wskaźnika zazębienia. Bezpieczeństwo Pracy 11, pp. 9–11
  21. . Zhang, X. & Yan, C. (2010) Application of precision harmonic gear drive in focusing mechanism of space camera. 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Smart Structures and Materials in Manufacturing and Testing. DOI: 10.1117/12.866749.
ISSN on-line 2392-0378
Language English
Funding No data
Figures 4
Tables 3
DOI 10.17402/453
Published 2020-12-30
Accepted 2020-11-23
Recieved 2020-05-13

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search repository

Advanced Search


My Account

RSS Feeds